Sains Malaysiana 53(12)(2024): 3219-3227

http://doi.org/10.17576/jsm-2024-5312-07

 

Nanobunga Hibrid Lektin sebagai Pembawa Novel untuk Pemegunan Glikoenzim

(Lectin Hybrid Nanoflowers as Novel Carrier for Glycoenzyme Immobilisation)

 

WAN NURAZRA MARSYA WAN AHMAD1, NOR NADIA SAAD1, NUR NABILAH SHAHIDAN2 & MUHAMMAD ASHRAF SHAHIDAN1,*

 

1Jabatan Sains Biologi dan Bioteknologi, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
2Jabatan Teknologi Tenaga, Mineral dan Bahan Fakulti Biokejuruteraan dan Teknologi, Universiti Malaysia Kelantan, Kampus Jeli, 17600 Jeli, Kelantan, Malaysia

 

Received: 29 April 2024/Accepted: 19 August 2024

 

Abstrak

Interaksi khusus antara concanavalin A (Con A), sejenis lektin daripada tumbuhan jackbean, dengan teras manosa pada glikan-N membolehkannya digunakan untuk pemegunan glikoenzim. Dalam kajian ini, nanobunga hibrid Con A- CuSO4 (CCHN) disediakan sebagai pembawa novel untuk pemegunan peroksidase lobak putih (HRP), glikoenzim yang digunakan secara meluas dalam aplikasi bioanalitikal. Morfologi CCHN yang disediakan dicerap menggunakan mikroskop elektron pengimbasan pancaran medan (FESEM) menunjukkan mikrostruktur persis-bunga dengan saiz purata diameter 51.5 μm serta saiz kelopak bunga yang luas sekitar 2 μm. Seterusnya, pengoptimuman pemegunan HRP pada CCHN dilakukan menggunakan format tiub Eppendorf dan plat mikro menunjukkan bacaan penyerapan A450 tertinggi pada campuran 100 mg/mL HRP dan 10 mg/mL CCHN untuk kedua-dua format. Aktiviti HRP terpegun pada CCHN yang diukur menggunakan format tiub Eppendorf (A450 = 1.58) adalah dua kali ganda lebih tinggi berbanding format plat mikro (A450 = 0.76) dan dipilih untuk kajian seterusnya. Bacaan A280 untuk setiap supernatan yang diperolehi selepas pengemparan dalam langkah pembasuhan yang diulang sebanyak empat kali pula didapati amat rendah menunjukkan HRP terpegun dengan kuat pada CCHN dan tiada kebocoran enzim pada larutan. Ujian penjanaan semula menunjukkan HRP terpegun boleh ditanggalkan daripada CCHN dengan sekali pembasuhan menggunakan gula perencat metil a-manosa pada kepekatan 0.1 M. Selain itu, ujian kebolehulangan turut dilakukan menggunakan tiga kelompok CCHN yang berbeza kerana tiada perbezaan signifikan pada bacaan A450 menunjukkan kebolehulangan yang baik untuk pemegunan HRP. Keputusan kajian ini menunjukkan CCHN yang dihasilkan mempunyai potensi yang tinggi untuk digunakan sebagai pembawa untuk pemegunan glikoenzim secara mudah, tekal serta boleh diguna-semula.

 

Kata kunci: Con A; glikoenzim; lektin; nanobunga

 

Abstract

Specific interaction between concanavalin A (Con A), a plant lectin from jackbean, with mannose core in N-glycans can be exploited to immobilise glycoenzymes. In this study, we prepared Con A-copper sulphate hybrid nanoflower (CCHN) as a novel carrier to immobilise horseradish peroxidase (HRP), a widely used glycoenzyme in bioanalytical application. The morphology of the prepared CCHN was determined using field emission scanning electron microscopy (FESEM), which showed flower-like microstructures with an average diameter size of 51.5 μm with and wide petal size of an approximately 2 μm. Then, HRP immobilisation optimisation experiments were carried out in Eppendorf tubes and microplates, which both formats showed the highest A450 measurements at 100 mg/mL HRP and 10 mg/mL CCHN mixture. However, twice HRP activities (A450 =1.58) were recorded when using Eppendorf tubes format as compared to microplate format (A450 = 0.76) and thus was used for further experiments. Furthermore, supernatant obtained after each washing step showed very low A280 values up to four washing cycles, indicating HRP was strongly immobilised to the CCHN and no enzyme leakage into solution. Meanwhile, regeneration study showed that single washing step using inhibitory sugar, methyl a-mannose, at 0.1 M can effectively detach HRP from CCHN. Moreover, reproducibility test using CCHN prepared in three different batches showed consistent HRP activity readings indicating good reproducibility. This study highlighted the potential application of lectin hybrid nanoflower as a simple, reproducible and reusable carrier for glycoenzyme immobilisation.

 

Keywords: Con A; glycoenzyme; lectin; nanoflowers

 

REferences

Ali, M., Ramirez, P., Tahir, M.N., Mafe, S., Siwy, Z., Neumann, R., Tremel, W. & Ensinger, W. 2011. Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein–lectin interactions. Nanoscale 3(4): 1894-1903.

Auld, D.S., Coassin, P.A., Coussens, N.P., Hensley, P., Klumpp-Thomas, C., Michael, S., Sittampalam, G.S., Trask, O.J., Wagner, B.K., Weidner, J.R., Wildey, M.J. & Dahlin, J.L. 2004. Microplate selection and recommended practices in high-throughput screening and quantitative biology. Dlm. The Assay Guidance, disunting oleh Markossian, S., Grossman, A., Arkin, M., Auld, D., Austin, C., Baell, J., Brimacombe, K., Chung, T.D.Y., Coussens, N.P., Dahlin, J.L., Devanarayan, V., Foley, T.L., Glicksman, M., Gorshkov, K., Haas, J.V., Hall, M.D., Hoare, S., Inglese, J., Iversen, P.W., Lal-Nag, M., Li, Z., Manro, J.R., McGee, J., McManus, O., Pearson, M., Riss, T., Saradjian, P., Sittampalam, G.S., Tarselli, M., Trask Jr., O.J., Weidner, J.R., Wildey, M.J., Wilson, K., Xia, M. & Xu, X. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences. hlm. 1381-1429.

Bu, S., Wang, K., Ju, C., Han, Y., Li, Z., Du, P., Hao, Z., Li, C., Liu, W. & Wan, J. 2018. A pregnancy test strip for detection of pathogenic bacteria by using concanavalin A-human chorionic gonadotropin-Cu3(PO4)2 hybrid nanoflowers, magnetic separation, and smartphone readout. Microchimica Acta 185: 464.

dos Santos Silva, P.M., de Oliveira, W.F., Albuquerque, P.B.S., dos Santos Correia, M.T. & Coelho, L.C.B.B. 2019. Insights into anti-pathogenic activities of mannose lectins. International Journal of Biological Macromolecules 140: 234–244.

Ge, J., Lei, J. & Zare, R.N. 2012. Protein–inorganic hybrid nanoflowers. Nature Nanotechnology 7(7): 428-432.

Han, J., Luo, P., Wang, L., Li, C., Mao, Y. & Wang, Y. 2019. Construction of magnetic nanoflower biocatalytic system with enhanced enzymatic performance by biomineralization and its application for bisphenol A removal. Journal of Hazardous Materials 380: 120901.

Huang, J., Zhuang, W., Wei, C., Mu, L., Zhu, J., Zhu, Y., Wu, J., Chen, Y. & Ying, H. 2018. Concanavalin A induced orientation immobilization of Nuclease P1: The effect of lectin agglutination. Process Biochemistry 64: 160-169.

Khairol Mokhtar, N.H.I., Hussin, A., Hamid, A.A., Zainal Ariffin, S.H. & Shahidan, M.A. 2022. Systematic optimisation of microtiter plate lectin assay to improve sialic acid linkage detection. Combinatorial Chemistry & High Throughput Screening 25(9): 1507-1517.

Kilimci, U., Evli, S., Öndeş, B., Uygun, M. & Uygun, D.A. 2021. Inulinase immobilized lectin affinity magnetic nanoparticles for inulin hydrolysis. Applied Biochemistry and Biotechnology 193(5): 1415-1426.

Lee, S.J., Jang, H. & Lee, D.N. 2022. Inorganic nanoflowers - synthetic strategies and physicochemical properties for biomedical applications: A review. Pharmaceutics 14(9): 1887.

Lewis, A.G. & Gibney, P.A. 2023. A rapid method to determine growth‐limiting nutrient concentrations for yeast in a microplate spectrophotometer. Current Protocols 3(5): e376.

Li, M., Su, H., Tu, Y., Shang, Y., Liu, Y., Peng, C. & Liu, H. 2019. Development and application of an efficient medium for chromogenic catalysis of tetramethylbenzidine with horseradish peroxidase. ACS Omega 4(3): 5459-5470.

Lin, M. & Chen, Z. 2020. A facile one-step synthesized epsilon-MnO2 nanoflowers for effective removal of lead ions from wastewater. Chemosphere 250: 126329.

Liu, Y., Chen, J., Du, M., Wang, X., Ji, X. & He, Z. 2017. The preparation of dual-functional hybrid nanoflower and its application in the ultrasensitive detection of disease-related biomarker. Biosensors and Bioelectronics 92: 68-73.

Qi, L., Yang, M., Chang, D., Zhao, W., Zhang, S., Du, Y. & Li, Y. 2021. A DNA nanoflower‐assisted separation‐free nucleic acid detection platform with a commercial pregnancy test strip. Angewandte Chemie International Edition 60(47): 24823-24827.

Sankarraj, N. & Nallathambi, G. 2015. Immobilization and characterization of cellulase on concanavalin A (Con A)-layered calcium alginate beads. Biocatalysis and Biotransformation 33(2): 81-88.

Sha, Q., Guan, R., Su, H., Zhang, L., Liu, B-F., Hu, Z. & Liu, X. 2020. Carbohydrate-protein template synthesized high mannose loading gold nanoclusters: A powerful fluorescence probe for sensitive Concanavalin A detection and specific breast cancer cell imaging. Talanta 218: 121130.

Shende, P., Kasture, P. & Gaud, R.S. 2018. Nanoflowers: The future trend of nanotechnology for multi-applications. Artificial Cells, Nanomedicine, and Biotechnology 46(sup1): 413-422.

Silva, M.L.S. 2019. Lectin biosensors in cancer glycan biomarker detection. Dlm. Advances in Clinical Chemistry, disunting oleh Makowski, G.S. Elsevier. hlm. 1-61.

Sugiyama, K., Sato, F., Komatsu, S., Kamijo, T., Yoshida, K., Kawabe, Y., Nishikawa, H., Fujimura, T., Takahashi, Y. & Sato, K. 2023. Highly sensitive glucose electrochemical sensor using sugar-lectin interactions. Electrochemical Science Advances 4(5): e2300015.

Takahashi, Y. & Fukusato, T. 2017. Animal models of liver diseases. Dlm. Animal Models for the Study of Human Disease. 2nd ed. Massachusetts: Academic Press. hlm. 313-339.

Tarhan, T., Ulu, A., Sariçam, M., Çulha, M. & Ates, B. 2020. Maltose functionalized magnetic core/shell Fe3O4@Au nanoparticles for an efficient l-asparaginase immobilization. International Journal of Biological Macromolecules 142: 443-451.

Tran, T.D. & Kim, M.I. 2018. Organic-inorganic hybrid nanoflowers as potent materials for biosensing and biocatalytic applications. BioChip Journal 12(4): 268-279.

Wang, K.Y., Bu, S.J., Ju, C.J., Han, Y., Ma, C.Y., Liu, W.S., Li, Z.Y., Li, C.T. & Wan, J.Y. 2019. Disposable syringe-based visual immunotest for pathogenic bacteria based on the catalase mimicking activity of platinum nanoparticle-concanavalin A hybrid nanoflowers. Microchimica Acta 186: 57.

Wang, K.Y., Bu, S.J., Ju, C.J., Li, C.T., Li, Z.Y., Han, Y., Ma, C.Y., Wang, C.Y., Hao, Z., Liu, W.S. & Wan, J.Y. 2018. Hemin-incorporated nanoflowers as enzyme mimics for colorimetric detection of foodborne pathogenic bacteria. Bioorganic and Medicinal Chemistry Letters 28(23-24): 3802-3807.

Welch, K.T., Turner, T.A. & Preast, C.E. 2008. Rational design of novel glycomimetics: Inhibitors of concanavalin A. Bioorganic and Medicinal Chemistry Letters 18(24): 6573-6575.

Yang, F., Xiang, C., Fang, S., Xu, F., Sun, L., Shen, C.Y. & Zou, Y. 2023. Synthesis and catalytic performance of nanoflower-like Ru@CoAl-LDH composite catalyst for NaBH4 hydrolysis. Journal of Alloys and Compounds 945: 169280.

Yang, N. & Yang, S. 2022. Synthesis of hydrolyzate-Cu3(PO4)2 hybrid nanoflowers from the alkaline thermal hydrolysate of sludge. Materials Today Communications 31: 103824.

Ye, R., Zhu, C., Song, Y., Lu, Q., Ge, X., Yang, X., Zhu, M.-J., Du, D., Li, H. & Lin, Y. 2016. Bioinspired synthesis of all-in-one organic-inorganic hybrid nanoflowers combined with a handheld pH meter for on-site detection of food pathogen. Small 12(23): 3094-3100.

Yin, Y., Xiao, Y., Lin, G., Xiao, Q., Lin, Z. & Cai, Z. 2015. An enzyme–inorganic hybrid nanoflower based immobilized enzyme reactor with enhanced enzymatic activity. Journal of Materials Chemistry B 3(11): 2295-2300.

Zeinhom, M.M.A., Wang, Y., Sheng, L., Du, D., Li, L., Zhu, M-J. & Lin, Y. 2018. Smart phone based immunosensor coupled with nanoflower signal amplification for rapid detection of Salmonella Enteritidis in milk, cheese and water. Sensors and Actuators B: Chemical 261: 75-82.

 

*Corresponding author; email: mashraf@ukm.edu.my

 

 

 

 

 

 

 

previous next